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Chapter 1

Linear programming

1.1 Introduction

Optimizations are used in a large number of situations. Examples are least square fit, mini-max
approximation, the travelling salesman problem and the knapsack problem. This document con-
centrates on a class of problems called linear programming where a linear function is maximized
or minimized subject to linear constraints. The related problem quadratic programming is briefly
covered in Appendix A. An linear programming example is:

Maximize:
x + 2y

subject to the constraints:
y ≤ 8

x + y ≤ 12
2x + y ≤ 20

1.2 Geometric view

The above constraints are shown in Figure 1.1 together with the object function (the function to
be maximized).
Assuming x ≥ 0 and y ≥ 0, it is seen that the constraints form a polygon. It is also clear that the
maximal solution is found by translating the object function as much as possible to the right.
If the problem is ill-formed the polygon is unbound and there is no final solution. If for example
the assumption x and y being positive are removed and a minimum solution is desired, the object
function can be moved infinitely to the left.
A linear Programming problem may have no solutions at all, if the constraints contradicts. An
example is shown i Figure 1.2.
In general, where more variables are used, the constraints form a hyper polyhedron and the object
function is a hyper plane. The solution can be found by translating the hyper plane until the
optimal solution is found.
Note that the solution is at one of the corners of the hyper polyhedron. The Simplex algorithm
searches through the corners in order to find a solution.
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The algorithm is divided into two phases: Phase I finds a corner and Phase II then searches from
one corner to the next, increasing the object function at each iteration.

Figure 1.1: Simple example

Figure 1.2: Example having no solution

1.3 Arithmetic view

In general each constraint can be an equality (=) or an inequality (≤ or ≥). The ≥ can be
changed to ≤ by changing the sign on each side of the inequality. By adding a positive so called
slag variable on the left side of the inequality it can be changed to an equality. This means that
the constraints in any linear programming problem can be written on the form:∑

j

aijxj = bi

where the variables xj may be constrained as follows:

a ≤ xj < ∞
−∞ < xj ≤ b
a ≤ xj ≤ b

−∞ < xj < ∞
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The upper limit of the third variable constraint can be removed by adding it to the linear pro-
gramming problem. Now the variable constraints, by a shift and/or negation of the variable, can
be reduced to:

0 ≤ xj < ∞

or xj unconstrained.

1.3.1 Unconstrained variables

If an unconstrained variable xj is replaced by the difference between two positive variables xj =
z1j − z2j all variables will be constrained by:

0 ≤ xj < ∞

However, this approach may lead to numeric problems, when solving the linear programming
problem. Since the unconstrained variables do not influence the solution a better approach is to
eliminate these variables from the linear programming problem, solve the reduced problem and
finally calculate the values of the unconstrained variables.

1.4 Solving the problem

As can be seen from the above, any linear programming problem can be written as:

Maximize or minimize: ∑
j

cjxj

subject to the constraints: ∑
j

aijxj = bi, bi ≥ 0, xj ≥ 0

It can be proven that among the solutions only the basic feasible solutions are necessary to
consider. If the A matrix above has n columns and m rows a basic solution is a solution where
m − n variables are set to zero and the resultant variables are found by solving the resulting m
by m matrix. The solution is found by a sequence of row operations, but only solutions where
xj ≥ 0 are feasible. Once a basic feasible solution is known, all other basic feasible solutions can
be found by appropriate row operations.

1.4.1 Phase I

In Phase I a basic feasible solution is found if possible. This is done by adding a set of so called
artificial variables to the set of equations. These variables must be zero in order not to alter
the problem. This is achieved by first requiring them to be positive, then minimizing their sum,
keeping the other variables ≥ 0 using row operations. If the minimum is zero, then all the artificial
variables are zero and a basic feasible solution has been found, otherwise the original problem has
no solution.
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1.4.2 Phase II

If a basic feasible solution is found in Phase I, then Phase II is used used to find the optimal
solution using row operations. In the following it is assumed a minimum solution is desired. At
each iteration a pivot element is chosen so that the coefficient of the object function in the pivot
column k is negative. Often the leftmost negative is chosen for simplicity. The pivot element must
be positive for the solution to be positive, since the right hand side is positive. The pivot row is
the row where the pivot element has the least quotient bi/aik, in order to keep the right hand side
positive after the row operations.
At each iteration a new basic feasible solution is found and the object function is decreased. When
no more negative coefficients are found in the object function, the minimum solution has been
found.
If a pivot column is encountered where all elements are negative including the object function
coefficient, the solution is at negative infinity.
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Appendix A

Quadratic programming

If a quadratic term is added to the object function the problem is called quadratic programming:

Minimize: ∑
j

cjxj +
1

2

∑
j

xj
∑
k

Qjkxk, Qij = Qji

subject to the constraints: ∑
j

aijxj ≤ bi, xj ≥ 0

Using the Karush-Kuhn-Tucker conditions the problem can be formulated:∑
j

Qijxj +
∑
j

ajiµj − yi = −ci

∑
j

aijxj + νi = bi

xj ≥ 0

µj ≥ 0

yj ≥ 0

νj ≥ 0∑
j

yjxj = 0

∑
j

µjνj = 0

yj are called the surplus variables and ν are the slag variables. The last two equations requires
yj and xj not being in the basis at the same iteration and correspondingly for µ and ν. If any
bj < 0, the equation is multiplied by -1.
The constraints are now on the same form as in section 1.4 and the problem is solved as Phase I
in section 1.4.1.

5



Bibliography

[1] Katta G. Murty, Linear Programming, 1983, John Wiley & Sons.

[2] Paul A. Jensen and Jonathan F. Bard, Operation Research Models and Methods, Quadratic
Programming, John Wiley & Sons.

6


	Linear programming
	Introduction
	Geometric view
	Arithmetic view
	Unconstrained variables

	Solving the problem
	Phase I
	Phase II


	Quadratic programming

