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Chapter 1

The Discrete Fourier Transform

1.1 Definition of the Discrete Fourier trans-

form

The definition of the Discrete Fourier transform (DFT) used in the following
is given by:

X(k) = DFTN{x(n)} =
N−1∑
n=0

x(n)e−j
2π
N
kn, k = 0, ..., N − 1

This definition is also used by the most common FFT implementations.
The Inverse Discrete Fourier transform (IDFT) is defined by:

x(n) = IDFTN{X(k)} =
1

N

N−1∑
k=0

X(k)ej
2π
N
nk

IDFT can be calculated from the DFT as follows:

x(n) = IDFTN{X(k)} =
1

N
DFTN{X∗(k)}∗

1.2 Some rules for real signals

For the real signal x(n) and the corresponding spectrum X(k) we have:

X(k) = X∗(−k)

where:
X(k) = DFTN{x(n)}

and:

x(n) = IDFTN{X(k)} =
1

N
DFTN{X(N − k)} = Re(IDFTN{Z(k)})

where:

Z(k) =


X(k) for k = 0, N/2
2X(k) for 1 ≤ k ≤ N/2− 1
0 for N/2 + 1 ≤ k ≤ N − 1

The Hilbert transform of x(n) is given by:

y(n) = Im(IDFTN{Z(k)})

1



1.3 A few words about zoom

Zoom is a method for increasing the frequency resolution of the spectrum of
a signal in a frequency band through a series of signal transformations.
The frequency band of interest must lie within the frequency range of the
signal, that is:

1

nd
fmax ≤ fc ≤ fmax −

1

nd
fmax

where:
fmax is the frequency range of the signal.
fc is the center frequency of the frequency band of interest.
nd is the decimation factor corresponding to the increase in frequency reso-
lution.

Frequency shift

y(n) = x(n)e−j2πfcn = x(n)(cos(2πfcn)− j sin(2πfcn))

Lowpass filtering

z(n) = h(n) ∗ y(n) = h(n) ∗ yre(n) + jh(n) ∗ yim(n)

where:
h(n) is a lowpass filter. The cutoff frequency of the filter is half the frequency
range of the frequency band of interest.

Decimation

v(n) = z(ndn)

where:
v(n) is the complex time signal used in the spectrum calculations.
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Chapter 2

Baseband narrow band spectra
and time functions

2.1 Fourier spectrum

S(k) =

{
1
N
X(k) for k = 0√
2
N
X(k) for 1 ≤ k ≤ kmax

where:
X(k) = DFTN{x(n)}

x(n): Time signal
S(k): Fourier spectrum
kmax: Antialiasing filter cutoff linenumber

2.1.1 Calculation of magnitude

The magnitude is calculated as follows:

Rms: G1(k) =
√
S2
re(k) + S2

im(k)

Pwr: G2(k) = G2
1(k)

Psd: G3(k) = 1
Bw
G2(k)

Esd: G4(k) = Tm
∆f
G2(k)

The values of Bw, Tm are given in Chapter 10.

2.2 Autospectrum

G(k) = E{|S(k)|2}

where:
S(k): Fourier spectrum

3



G(k): Autospectrum
E{}: Averaging operator

2.2.1 Calculation of magnitude

The magnitude has the following representations:

Rms: G1(k) =
√
G(k)

Pwr: G2(k) = G(k)

Psd: G3(k) = 1
Bw
G(k)

Esd: G4(k) = Tm
∆f
G(k)

The values of Bw, Tm are given in Chapter 10.

2.3 Enhanced spectrum

S(k) =

{
1
N
X(k) for k = 0√
2
N
X(k) for 1 ≤ k ≤ kmax

where:
X(k) = DFTN{x(n)}

x(n): Enhanced time signal
S(k): Enhanced spectrum

2.3.1 Calculation of magnitude

See Fourier spectrum

2.4 Cross spectrum using spectrum averag-

ing

Gab(k) = G∗ba(k) = E{S∗a(k)Sb(k)}

where:
Sa(k): Fourier spectrum of ChA
Sb(k): Fourier spectrum of ChB
Gab(k): Cross spectrum
E{}: Averaging operator

4



2.4.1 Calculation of magnitude

The magnitude is calculated as follows:

Rms: G1ab(k) = 4

√
G2
abre

(k) +G2
abim

(k)

Pwr: G2ab(k) = G2
1ab(k)

Psd: G3ab(k) = 1√
BwaBwb

G2ab(k)

Esd: G4ab(k) =

√
TmaTmb√
∆fa∆fb

G2ab(k)

The values of Bw, Tm are given in Chapter 10.

2.5 Cross spectrum using signal enhancement

Gab(k) = G∗ba(k) = S∗a(k)Sb(k)

where:
Sa(k): Enhanced spectrum of ChA
Sb(k): Enhanced spectrum of ChB
Gab(k): Cross spectrum

2.5.1 Calculation of magnitude

See section about spectrum averaging

2.6 Frequency response

H1(k) =
Gab(k)

Gaa(k)

H2(k) =
Gbb(k)

Gba(k)

H3(k) =

√√√√Gbb(k)

Gaa(k)
ejφ(k), φ(k) = 6 Gab(k)

where:
Gaa(k): Autospectrum or magnitude of enhanced spectrum ChA in Pwr
Gbb(k): Autospectrum or magnitude of enhanced spectrum ChB in Pwr
Gab(k): Cross spectrum

5



2.6.1 Calculation of magnitude

M(k) =
√
H2
re(k) +H2

im(k)

where:
H(k): Corresponds to either H1(k), H2(k) or H3(k)

2.7 Impulse response

h(n) =

{
g(n+N/2) for 0 ≤ n ≤ N/2− 1
g(n−N/2) for N/2 ≤ n ≤ N − 1

where:

g(n) =
1

∆T
IDFTN{G(k)}

G(k) =


H(k) for k = 0
2H(k) for 1 ≤ k ≤ kmax
0 for kmax + 1 ≤ k ≤ N − 1

H(k): Corresponds to either H1(k), H2(k) or H3(k)
∆T : is the sampling interval

2.7.1 Calculation of magnitude

M(n) =
√
h2
re(n) + h2

im(n)

2.8 Coherence

γ2(k) =
|Gab(k)|2

Gaa(k)Gbb(k)

where:
Gaa(k): Autospectrum ChA in Pwr
Gbb(k): Autospectrum ChB in Pwr
Gab(k): Cross spectrum
γ2(k): Coherence

2.9 Autocorrelation coefficient

r(n) =
R(n)

R(0)

where:
R(n) = IDFTN{F (k)}, for 0 ≤ n ≤ N/2− 1

F (k) =

{
N2G(k) for 0 ≤ k ≤ kmax
0 for kmax + 1 ≤ k ≤ N − 1

G(k): Autospectrum or magnitude of enhanced spectrum in Pwr

6



2.9.1 Calculation of magnitude

m(n) =
√
r2
re(n) + r2

im(n)

2.10 Cross correlation coefficient

rab(n) =

 Rab(n+N/2)/
√
Raa(0)Rbb(0) for 0 ≤ n ≤ N/2− 1

Rab(n−N/2)/
√
Raa(0)Rbb(0) for N/2 ≤ n ≤ N − 1

where:
Rab(n) = IDFTN{Fab(k)}

Fab(k) =

{
N2Gab(k) for 0 ≤ k ≤ kmax
0 for kmax + 1 ≤ k ≤ N − 1

Raa(0): Sample 0 in Autocorrelation function ChA
Rbb(0): Sample 0 in Autocorrelation function ChB
Gab(k): Cross spectrum

2.10.1 Calculation of magnitude

mab(k) =
√
r2
abre

(k) + r2
abim

(k)
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Chapter 3

Zoom narrow band spectra and
time functions

3.1 Fourier spectrum

S(k) =

{ √
2
N
X(N + k − kmax) for 0 ≤ k ≤ kmax − 1√

2
N
X(k − kmax) for kmax ≤ k ≤ 2kmax

where:
X(k) = DFTN{x(n)}

x(n): Time signal
S(k): Fourier spectrum
kmax: Zoom filter cutoff line number

3.1.1 Calculation of magnitude

See Section 2.1.1

3.2 Autospectrum

See Section 2.2

3.3 Enhanced spectrum

S(k) =

{ √
2
N
X(N + k − kmax) for 0 ≤ k ≤ kmax − 1√

2
N
X(k − kmax) for kmax ≤ k ≤ 2kmax

where:
X(k) = DFTN{x(n)}

x(n): Enhanced time signal
S(n): Enhanced spectrum

8



3.3.1 Calculation of magnitude

See Section 2.3.1

3.4 Cross spectrum using spectrum averag-

ing

See Section 2.4

3.5 Cross spectrum using signal enhancement

See Section 2.5

3.6 Frequency response

See Section 2.6

3.7 Impulse response

h(n) =

{
g(n+N/2) for 0 ≤ n ≤ N/2− 1
g(n−N/2) for N/2 ≤ n ≤ N − 1

where:

g(n) =
1

∆T
IDFTN{G(k)}

G(k) =


H(k + kmax) for 0 ≤ k ≤ kmax
0 for kmax + 1 ≤ k ≤ N − kmax − 1
H(k −N + kmax) for N − kmax ≤ k ≤ N − 1

H(k): Corresponds to either H1(k), H2(k) or H3(k)
∆T : is the sampling interval

3.7.1 Calculation of magnitude

See Section 2.7.1

3.8 Coherence

See Section 2.8
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3.9 Autocorrelation coefficient

r(n) =
R(n)

R(0)

where:
R(n) = IDFTN{F (k)}, for 0 ≤ n ≤ N/2− 1

F (k) =


N2G(k + kmax) for 0 ≤ k ≤ kmax
0 for kmax + 1 ≤ k ≤ N − kmax − 1
N2G(k −N + kmax) for N − kmax ≤ k ≤ N − 1

G(k): Autospectrum or magnitude of enhanced spectrum in Pwr

3.9.1 Calculation of magnitude

See Section 2.9.1

3.10 Cross correlation coefficient

rab(n) =

 Rab(n+N/2)/
√
Raa(0)Rbb(0) for 0 ≤ n ≤ N/2− 1

Rab(n−N/2)/
√
Raa(0)Rbb(0) for N/2 ≤ n ≤ N − 1

where:
Rab(n) = IDFTN{Fab(k)}

Fab(k) =


N2Gab(k + kmax) for 0 ≤ k ≤ kmax
0 for kmax + 1 ≤ k ≤ N − kmax − 1
N2Gab(N − 1− k) for N − kmax ≤ k ≤ N − 1

Raa(0): Sample 0 in Autocorrelation function ChA
Rbb(0): Sample 0 in Autocorrelation function ChB
Gab(k): Cross spectrum

3.10.1 Calculation of magnitude

See Section 2.10.1
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Chapter 4

Equalization

Equalization is mainly used to compensate a frequency respons or impulse
response for errors caused by differences in the two measurement channels.
Differences in the amplitude and phase characteristics can be eliminated by
dividing the measured frequency response by a reference frequency response.
The reference frequency response can be obtained by measuring the frequency
response of the instrument, by using the same input directly on the two chan-
nels of the instrument. Equalization can also be used for compensation for
other measurement errors, by using a suitable reference.

Equalization of the frequency response is calculated as follows:

He(n) =
H(n)

Hr(n)
=
|H(n)|
|Hr(n)|

ej(φ(n)−φr(n))

where:
H(n) is the measured frequency response.
Hr(n) is the reference frequency response.

The equalized impulse response is calculated from the equalized frequency
response.
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Chapter 5

Group delay calculations

The group delay of a continuous complex signal is defined as:

gd(x) = − 1

2π

dφ(x)

dx

where:

φ(x) = arctan
sim(x)

sre(x)

φ(x) is in radians.
x is the independent variable (eg. time (s) or frequency (Hz)).
s(n) is the signal or spectrum.

For a discrete signal an often used approximation to the group delay is given
by:

gd(n) =


− 1

2π
φ(n+1)−φ(n)

∆x for 0 ≤ n ≤ nmax − 1

− 1
2π

2φ(n)−3φ(n−1)+φ(n−2)
∆x for n = nmax

where:
∆x is the time or frequency resolution.

If the phase has discontinuities then the formula will lead to highly incorrect
results at the discontinuities. Another method is therefore often preferable:

gd(n) =



− 1
2π

φcont(1)−φcont(0)
∆x for n = 0

− 1
2π

φcont(n+1)−φcont(n−1)
2∆x for 1 ≤ n ≤ nmax − 1

− 1
2π

φcont(nmax)−φcont(nmax−1)
∆x for n = nmax

where:

φcont(n) =

{
φ(0) for n = 0
φ(n)− 2πNrotations(n) for 1 ≤ n ≤ nmax

12



and

Nrotations(n) = round(
φ(n)− φcont(n− 1)

2π
)

φ(n) is calculated the usual way using Arctan and taking into account the
sign. φ must be in the range −π ≤ φ < π.
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Chapter 6

Delay compensation of phase
functions

When a measurement is delayed in time the effect in the frequency domain is
a linear phase contribution to the frequency domain functions. Correspond-
ingly will a frequency shift have a similar effect in the time domain.
It is possible to compensate for such a time delay (or frequency shift) by mul-
tiplying the complex spectrum (time signal) by a complex exponential with
a linear increasing phase. If only the phase function is to be compensated a
linear phase can be added to the phase function.

6.1 Frequency domain functions

The frequency domain functions (e.g. spectrum or frequency response) can
be compensated for a time delay as follows:

Sc(n) = S(n)ejδn

where:

δ = 2πδt∆f = 2πδt
fs
N

δt is the time delay in the measurement.
∆f is the frequency resolution.
fs is the sampling frequency.
N is the record length.

6.2 Time domain functions

The time domain functions (e.g. time signal or correlation function) can be
compensated for a frequency shift as follows:

Tc(n) = T (n)ejδn

where:

δ = 2πδf∆T = 2πδf
1

fs

14



δf is the frequency shift in the measurement.
∆T is the sampling interval.
fs is the sampling frequency.
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Chapter 7

Bow-tie correction

7.1 Autocorrelation

rc(n) = r(n)/(1− 2n/N), 0 ≤ n ≤ N/2− 1

7.2 Cross correlation

rcab(n) =

{
rab(n)N/(2n) for 0 ≤ n ≤ N/2− 1
rab(n)/(−2n/N + 2) for N/2 ≤ n ≤ N − 1

16



Chapter 8

Integration and differentiation
of magnitude spectra

8.1 Integration

The RMS-magnitude spectrum of the integral of a signal is given by:

S̃(n) =
1

n∆f
S(n)

where:
∆f is the frequency resolution.
S(n) is the RMS-magnitude spectrum of the signal.
S̃(n) is the RMS-magnitude spectrum of the integral of the signal.

8.2 Differentiation

The RMS-magnitude spectrum of the derivative of a signal is given by:

S̃(n) = n∆fS(n)

where:
∆f is the frequency resolution.
S(n) is the RMS-magnitude spectrum of the signal.
S̃(n) is the RMS-magnitude spectrum of the derivative of the signal.
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Chapter 9

A-weighting of spectra

The magnitude of the frequency response of the A-weighting filter is given
by:

HA(f) =
f 2

4 f
4

(f 2 + f 2
1 )

√
(f 2 + f 2

2 )(f 2 + f 2
3 )(f 2 + f 2

4 )

where:
f1 = 20.59899706
f2 = 107.6526486
f3 = 737.8622307
f4 = 12194.21715
The A-weighted RMS spectrum is given by:

SA(f) = HA(f)S(f)

where:
S(f) is the unweighted RMS spectrum.
SA(f) is the A-weighted RMS spectrum.

When A-weighting N’th octave spectra this method is only valid when N ≥
24. The following steps must therefore be followed:

1. Calculate an N’th octave spectrum with N ≥ 24.

2. A-weighting as described above

3. Calculate the M’th octave spectrum using the method described in
Chapter 14.

18



Chapter 10

PSD and ESD for narrow
bandspectra

The factors Bw and Tm in the PSD and ESD calculations, depend on the
windowtype and the linespacing in the spectrum as follows:

Bw = δw∆f

Tm =
δm
∆f

where:
δw, δm: Depends on the chosen window. See Chapter 11
∆f : Line spacing in the spectrum in Hz

19



Chapter 11

Window definitions

All windows in the following are scaled as follows:

1

N

N−1∑
n=0

w(n) = 1

The correction factors are given by:

δw =
1

N

N−1∑
n=0

w2(n)

δm =
1

max(w(n))

11.1 Uniform

w(n) = 1 for 0 ≤ n ≤ N − 1

δw = 1

δm = 1

11.2 Hanning

w(n) = 1− cos(
2π

N
n) for 0 ≤ n ≤ N − 1

δw = 1.5

δm = 0.5
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11.3 Moriat

The window has a maximum asymptotic roll-off in the frequency domain
(20(2P+1)dB/decade). In the time domain the first 2P -1 derivatives are
0 at the window ends. Note that the window is identical to the Hanning
window for P=1.

w(n) = 1 +
P∑
i=1

βPi cos(
2π

N
in)

=
1

δm
cos2P (

π

N
(n− N

2
)) for 0 ≤ n ≤ N − 1

where:

βPi = 2(−1)i
(P !)2

(P − i)!(P + i)!

δw = 1 +
1

2

P∑
i=1

β2
Pi

δm = 1/(1 +
P∑
i=1

|βPi |)

11.4 Hamming

The highest sidelobe is minimized and is attenuated by 43.2 dB.

w(n) = 1 + β1 cos(
2π

N
n) for 0 ≤ n ≤ N − 1

where:
β1 = −0.857516

δw = 1.3677

δm = 0.5384

11.5 Blackman - Harris

The highest sidelobe is minimized and is attenuated by 71.4 dB.

w(n) = 1 +
2∑
i=1

βi cos(
2π

N
in) for 0 ≤ n ≤ N − 1

where:
β1 = −1.17213698
β2 = +0.18462471

δw = 1.7034

δm = 0.4243
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11.6 3. order Blackman - Harris

The highest sidelobe is minimized and is attenuated by 98.1 dB.

w(n) = 1 +
3∑
i=1

βi cos(
2π

N
in) for 0 ≤ n ≤ N − 1

where:
β1 = −1.34550893
β2 = +0.37578780
β3 = −0.02928336

δw = 1.9762

δm = 0.3636

11.7 Hee - Low sidelobe

The highest sidelobe is minimized and is attenuated by 125.3 dB.

w(n) = 1 +
4∑
i=1

βi cos(
2π

N
in) for 0 ≤ n ≤ N − 1

where:
β1 = −1.45875575
β2 = +0.54308792
β3 = −0.08816750
β4 = +0.00390256

δw = 2.2154

δm = 0.32323

11.8 User defined

w(n) = 1 +
P∑
i=1

βi cos(
2π

N
in) for 0 ≤ n ≤ N − 1

where:
The number of coefficients P and the coefficients βi are specified by the user.

δw = 1 +
1

2

P∑
i=1

β2
i

δm = 1/(1 +
P∑
i=1

|βi|)
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11.9 Kaiser-Bessel

w(n) = 1 +
3∑
i=1

βi cos(
2π

N
in) for 0 ≤ n ≤ N − 1

where:
β1 = −1.23741757
β2 = +0.24343057
β3 = −0.00304230

δw = 1.7952

δm = 0.4026

11.10 Flattop

The window has a minimum attenuation of sidelobes of 93.0 dB and a maix-
mum mainlobe ripple of 0.0085 db.

w(n) = 1 +
4∑
i=1

βi cos(
2π

N
in) for 0 ≤ n ≤ N − 1

where:
β1 = −1.93261719
β2 = +1.28613281
β3 = −0.38769531
β4 = +0.03222656

δw = 3.77

δm = 0.21558

11.11 Transient

w(n) =


0 for 0 ≤ n ≤ D − 1
N
L

for D ≤ n ≤ D + L− 1
0 for D + L ≤ n ≤ N − 1

δw =
N

L

δm =
L

N

11.12 Short hanning

w(n) =


0 for 0 ≤ n ≤ D − 1
N
L

(1− cos(2π
L

(n−D))) for D ≤ n ≤ D + L− 1
0 for D + L ≤ n ≤ N − 1
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δw = 1.5
N

L
for L ≥ 2

δm = 0.5
L

N

11.13 Exponential

w(n) =

{
0 for 0 ≤ n ≤ D − 1
Ae−(n−D)/L for D ≤ n ≤ N − 1

where:
D: Delay
L: Equivalent length

A = N
1− e−1/L

1− e−(N−D)/L

δw =
A2

N

1− e−2(N−D)/L

1− e−2/L

δm =
1

A

11.14 CosCos

w(n) =



0 for 0 ≤ n ≤ D − 1
0.5A(1− cos( π

L1
(n−D + 1))) for D ≤ n ≤ D + L1 − 1

A for D + L1 ≤ n ≤ D + L− L2 − 1
0.5A(1− cos( π

L2
(n− L−D))) for D + L− L2 ≤ n ≤ D + L− 1

0 for D + L ≤ n ≤ N − 1

where:
D: Delay
L1: Length of head L1 ≥ 2
L2: Length of tail L2 ≥ 2
L: Total length

A =
2N

2L− L1 − L2 + 2

δw =
A2

4N
(4L− 2.5(L1 + L2) + 4)

δm =
1

A
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Chapter 12

Puretone detection

This chapter describes a method for finding the pure tones in a spectrum.
The spectrum levels used in the formulas are the RMS magnitude spectrum
levels of either the instantaneous-, auto- or enhanced spectrum.
The pure tones are found at each pure tone peak. With the Hanning- and
Low Sidelobe window, interpolation is used to improve the resolution. For
all other windows the resolution is given by the line spacing in the spectrum.
A spectrum has a pure tone peak at each spectrum line where all conditions
in one of the following cases are satisfied:

1.

G(n− 2) < G(n− 1) < G(n)

G(n+ 2) < G(n+ 1) < G(n)

G(n− 1) = G(n+ 1)

2.

G(n− 3) < G(n− 2) < G(n− 1)

G(n+ 2) < G(n+ 1) < G(n)

G(n− 1) = G(n)

3.

G(n− 2) < G(n− 1) < G(n)

G(n+ 2) < G(n+ 1) < G(n)

G(n− 1) 6= G(n+ 1)

where:
G(n) is the RMS magnitude spectrum level at line n if G(n) ≥ G0, otherwise
G(n) = G0. G0 is a prescribed level.

12.1 Hanning window

The line number frequency (np) and the level (Gp) of the pure tone is given
by:
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12.1.1 Case 1

np = n

Gp = G(n)

12.1.2 Case 2

np = n− 0.5

Gp = 1.17809725G(n)

12.1.3 Case 3

np = n+ δn

Gp = (1− δ2
n)

πδn
sin πδn

G(n)

where:

δn =
2−G
1 +G

Sign(n2 − n)

G =
G(n)

G(n2

n2:Line number of the second higher spectrum line in the peak

12.2 Low Sidelobe window

The line number frequency (np) and the level (Gp) of the pure tone is given
by:

12.2.1 Case 1

np = n

Gp = G(n)

12.2.2 Case 2

np = n− 0.5

Gp = 1.08144089G(n)
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12.2.3 Case 3

np = n+ δn

Gp = (1/(1 + δ2
n

4∑
i=1

βi
δ2
n − i2

))
πδn

sin πδn
G(n)

where:

−2.4220141388G2 + 0.3406758174G+ 4.0856487460

0.7525573617G2 + 2.2560634875G+ 1.0
Sign(n2 − n)

G =
G(n)

G(n2)

βi Window coefficients
n2:Line number of the second higher spectrum line in the peak

12.3 All other windows

For all three cases the line number frequency (np) and the level (Gp) of the
pure tone is given by:

np = n

Gp = G(n)
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Chapter 13

Distortion measurements

This chapter describes the methods for calculating the following types of
distortion: Harmonic distortion, Difference Frequency Distortion and Inter-
modulation Distortion. The calculations are based on the RMS magnitude
spectrum levels of either the instantaneous-, auto- or enhanced spectrum.
For each type of distortion, formulas for both the total distortion and the
n’th order distortion is given. Although the total distortion is defined over
an infinite frequency range, it is in practice limited by the frequency span of
the spectrum.
The spectrum levels used in the formulas are the levels of the harmonics and
sidebands of the input signal(singletone for Harmonic Distortion, twotone
for the Difference Frequency- and Intermodulation Distortion). The fre-
quency(ies) of the input signal can either be given exact or approximately.
In the later case the exact frequency(ies) of the input signal is found from
the spectrum by using the methods for puretone detection. In both cases the
levels are found using the methods for puretone detection.

13.1 Finding the frequencies of the input sig-

nal

When the frequency(ies) of the input signal is given approximately the exact
frequency(ies) are found by searching for the maximum level in the spectrum
within ±5 spectral lines from the given line number frequency (ies) and using
the interpolation methods for puretone detection.

13.2 Finding the frequency of the harmonics

and the sidebands

13.2.1 Harmonic Distortion

The frequency of the harmonics is given by:

fn = nf1 n ≥ 1
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where:
f1 is the exact frequency of the input frequency.
n is the distortion order.

13.2.2 Difference Frequency Distortion

The frequency of the sidebands is givne by:

w(n) =



n
2
(f2 − f1) if n even and n ≥ 2

n+1
2
f2 − n−1

2
f1 if n odd and n ≥ 3

n+1
2
f2 − n−1

2
f1 if n odd and n ≤ −3

where:
f1 is the exact frequency of the lowest input frequency.
f2 is the exact frequency of the highest input frequency.
n is the distortion order.

13.2.3 Intermodulation Distortion

The frequency of the sidebands is givne by:

w(n) =


f2 + (n− 1)f1 if n ≥ 2

f2 + (n+ 1)f1) if n ≤ −2

where:
f1 is the exact frequency of the lowest input frequency.
f2 is the exact frequency of the highest input frequency.
n is the distortion order.

13.3 Level of the input signal, harmonics and

sidebands

The levels of the input signal (Vf1 and Vf2) and the levels of the harmonics
and sidebands (vn) are calculated using the methods for puretone detection.

13.4 Distortion calculation

In the case where no harmonics or sidebands are present within the frequency
span of the spectrum, the total distortion is 0 for all three types of distortion.
The distortion of order 1 is always 1 for all three types of distortion.
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13.4.1 Harmonic Distortion

The Total Harmonic Distortion is given by:

THD =

√∑N
i=2 v

2
i√∑N

i=1 v
2
i

The Harmonic Distortion of order n is given by:

HDn =
vn√∑N
i=1v

2
i

The upper limit N in the summation is given by the frequency span.

13.4.2 Difference Frequency Distortion

The Total Difference Frequency Distortion is given by:

TDFD =

√∑N
i=2 v

2
i +

∑M
j=3(v+j + v−j)2

Vf1 + Vf2

The first summation is over the sidebands of even oder and the second over
the side- bands of odd order.
The upper limits N and M in the summations are given by the frequency
span. If the maximum distortion order is 2 then the second summation will
vanish.

The Difference Frequency Distortion of order n is given by:

DFDn =


vn

Vf1
+Vf2

if n even

v+n+v−n

Vf1
+Vf2

if n odd

13.4.3 Intermodulation Distortion

The Total Intermodulation Distortion is given by:

TIMD =

√∑N
i=2(v+i + v−i)2

Vf2

The upper limit N in the summation is given by the frequency span.

The Intermodulation Distortion of order n is given by:

IMDn =
v+n + v−n

Vf2
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Chapter 14

N’th Octave Synthesis

N’th Octave Synthesis is a method for calculating an N’th octave spectrum
based on a constant bandwidth spectrum.
An N’th octave spectrum is a constant percentage bandwidth spectrum, that
is, a spectrum with a fixed ratio between the bandwidth and the center fre-
quency of each band. The lower, upper and center frequencies of the p’th
frequency band are given by:

N even:
fNl(p) = 10

3p
10N

fNc(p) = 10
3p

10N 10
3

20N

fNu(p) = 10
3p

10N 10
6

20N

N odd:
fNl(p) = 10

3p
10N 10

−3
20N

fNc(p) = 10
3p

10N

fNu(p) = 10
3p

10N 10
3

20N

As seen from the above, the cutoff frequencies are calculated on a decade
basis rather than an octave basis in contrast with the name of the spectrum.
A PSD constant bandwidth spectrum (eg. a DFT spectrum) is converted to
an N’th octave spectrum by first regarding the constant bandwidth spectrum
as a stepwise constant function as follows:

S̃(f) = S̃(nδ) = S(n), −1

2
∆f ≤ δ ≤ 1

2
∆f

where:
∆f is the frequency resolution of the constant bandwidth spectrum.
S(n) is the PSD constant bandwidth spectrum.
S̃(f) is the stepwise constant spectrum.

The N’th octave spectrum is then found by integrating S̃(f) over each fre-
quency band:

GN(p) =
∫ fNu (p)

fNl (p)
S̃(f)df
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where:
GN(p) is the power of the p’th frequency band of the N’th octave spectrum.

The PSD and BSD spectra are calculated as follows:

GNPSD(p) =
1

BN(p)
GN(p)

GNESD(p) =
TN(p)

BN(p)
GN(p)

where:
BN(p) is the bandwidth of the p’th frequency band of the N’th octave spec-
trum.
TN(p) is the measurement time of the p’th frequency band of the N’th octave
spectrum.

From an N’th octave spectrum it is possible to calculate an M’th octave
spectrum if N is divisible by M:

N/M even:

GM(p) =
k1−1∑
k=−k1

GN(
N

M
p+ k), k1 =

1

2

N

M

N/M odd:

GM(p) =
k1∑

k=−k1
GN(

N

M
p+ k), k1 =

1

2
(
N

M
− 1)
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Chapter 15

Probability functions

15.1 Probability density

The probability density function is defined by:

f(n) =
Number of samples with a level in the interval[ln..ln+1]

Total number of samples

The x-coordinate of the n’th interval is given by:

x(n) = (ln + ln+1)/2 = αn+ β

where:
α and β are scaling constants.

From the definition it follows that:

P−1∑
n=0

f(n) = 1

where:
P is the number of intervals.

Probability density functions with an interval width of αK are given by:

fK(n) =
K−1∑
k=0

f(l + k),

{
l = 0, K, ..., P −K
n = 0, 1, ..., P/K − 1

15.2 Probability distribution

The probability distribution is given by:

F (n) =
n∑
l=0

f(l), n = 0, 1, ..., P − 1

Probability distribution functions with an interval width of αK are given by:

FK(n) = F ((n+ 1)K − 1)
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=
(n+1)K−1∑

l=0

f(l)

=
n∑
l=0

fK(l), n = 0, 1, ..., P/K − 1

15.3 Mean

The mean is given by:

µ =
P−1∑
n=0

x(n)f(n)

= αµ̃+ β

where:

µ̃ =
P−1∑
n=0

nf(n)

15.4 Variance

The variance is given by:

ϑ =
P−1∑
n=0

(x(n)− µ)2f(n)

= α2(ϑ̃− µ̃2)

where:

ϑ̃ =
P−1∑
n=0

n2f(n)

15.5 Standard deviation

The standard deviation is given by:

σ =
√
ϑ

15.6 Skewness

The skewness is given by:

ζ =
P−1∑
n=0

(x(n)− µ)3f(n)

= α3(ζ̃ − 3µ̃ϑ̃+ 2µ̃3)

where:

ζ̃ =
P−1∑
n=0

n3f(n)
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15.7 Kurtosis

The kurtosis is given by:

κ =
P−1∑
n=0

(x(n)− µ)4f(n)

= α4(κ̃− 4µ̃ζ̃ + 6µ̃2ϑ̃− 3µ̃4)

where:

κ̃ =
P−1∑
n=0

n4f(n)
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Chapter 16

Averaging

Averaging is used to improve the accuracy of the estimation of DC and RMS
levels. The only distinction between the procedures for estimation of DC and
RMS levels is that the DC averaging is based on the signal sample values
whereas the RMS averaging is based on the squared sample values and taking
the squareroot of the result.
However, squaring a signal will double the cut off frequency, but since the
signal is sampled there is a potential risk for aliasing. This is important
when using the formulas for the averaging time to compute the ripple of the
detected signal. In the following no distinction is made between DC and
RMS calculation.
Averaging is a low-pass filtering of the signal by either an FIR or IIR filter
with a frequency response of unity at zero frequency. The average is called
a linear average when an FIR filter is used and an exponential average when
an IIR filter is used.
The linear average is traditionally an average with an FIR filter with filter
coefficients all having the same value. In the following the linear average
does not have this limitation.
The exponential average is traditionally an average with a first order IIR
filter. In the following only this case is considered.
Usually only some of the output samples are used and the linear averaging is
greately simplified since only the samples of interest need to be calculated.
For exponential averaging, however, all samples are used in the IIR filter feed
back loop.
When the output sampling interval for linear averaging is shorter than the
FIR filter impulse response length, the average is called a running average.

16.1 Linear average

In general a linear average can be written:

vavg(n) =
1

A

N−1∑
k=0

h(k)x(n+N − 1 + k)

A =
N−1∑
k=0

h(k)
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where:
vavg(n) is the average output.
h(k) is the averaging filter impulse response.
N is the length of the filter.
x(k) is the input.

If h(n) = h(N − 1− n), that is, h(n) is symmetrical then:

vavg(n) =
1

A

N−1∑
k=0

h(k)x(n+ k)

and a single average is just the weighted sum of input samples given by:

vavg =
1

A

N−1∑
k=0

h(k)x(k)

Flat weighting

When h(n) = 1 for all n then the average is given by:

vavg(n) =
1

N

N−1∑
k=0

x(n+ k)

Now, if the output of the average filter is sampled at a rate of N/P then the
average can be written:

vavg(
N

P
m) =

1

N

N−1∑
k=0

x(
N

P
m+ k)

=
1

N

P−1∑
l=0

N/P−1∑
k=0

x(
N

P
(m+ l) + k)

=
1

N

P−1∑
l=0

x∗(m+ l)

x∗(m) =
N/P−1∑
k=0

x(
N

P
m+ k)

or alternatively:

yavg(m+ 1) = yavg(m) + x∗(m+ P )− x∗(m)

vavg(
N

P
m) =

1

N
yavg(m)

As seen from the above a flat weighted linear average with a sampling interval
of N

P
can be computed recursively from a series of linear averages with length

N
P

.
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Averaging time

The averaging time of a linear average with a weighting function h(n) of
length N is:

TA = N∆T

where ∆T is the input sampling interval.

16.2 Exponential average

In general an exponential average is given by:

yavg(n) = (1− 2

N + 1
)yavg(n− 1) +

2

N + 1
x(n)

The formula is only valid for N ≥ 1. N should be set to 1 for no averaging.

Averaging time

The decay of the averaging is given by:

yavg(n) = (1− 2

N + 1
)n ≈ e−

2
N
n

This corresponds to an RC network with a time constant of τ= RC, this
means that N

2
∆T = RC. Where ∆T is the sampling interval

The effective averaging time for such an RC network is given in R.B. Randall,
Frequency Analysis, p. 94:

TA = 2RC

giving:

TA = N∆T

where ∆T is the input sampling interval.
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