
Cubic spline interpolation

by

Jens Hee
https://jenshee.dk

June 2019



Change log

21. June 2019

1. Document started.

7. March 2020

1. Meta data added.

i



Contents

1 Cubic spline interpolation 1

ii



Chapter 1

Cubic spline interpolation

Cubic spline interpolation requires all data samples to be available beforehand and is thus not
suitable for sample rate change as the methods described in [1].
The interpolation is done by fitting a third degree polynomial to each interval such that a continu-
ous curve with continuous first and second derivatives is obtained. Moreover the second derivative
is required to be zero at the endpoints.
If the number of samples is n then there are n− 1 polynomials each having four parameters and
the problem can in theory be solved by solving 4(n − 1) linear equations. Unfortunately the set
of equations is ill-conditioned and large errors may be introduced for large values of n. A more
attractive method is given in [2] and is summarized in the following.
First the second derivative for all samples is calculated from the following set of n − 2 linear
equations:

(xi − xi−1)s
′′
(xi−1) + 2(xi+1 − xi−1)s

′′
(xi) + (xi+1 − xi)s

′′
(xi+1) = 6[s(xi, xi+1) − s(xi−1, xi)]

where:
i = 2, 3, ..., n− 1
s
′′
(xi) is the second derivative at sample xi. s

′′
(x1) = s

′′
(xn) = 0

s(xi, xi+1) = (yi+1 − yi)/(xi+1 − xi).
(xi, yi) are the given samples.

The set of equations can be solved using Gauss elimination, but the iterative method given in
[2] is more efficient. See also the program example below.
Once the s

′′
(xi) are known, s

′′
(x) can be calculated easily for any x in (xi, xi+1) since it is a linear

function in each interval:
s
′′
(x) = s

′′
(xi) + (x− xi)s

′′
(xi, xi+1)

Finally it can be shown that s(x) can be found from:

s(x) = s(xi) + (x− xi)s(xi, xi+1) + (x− xi)(x− xi+1)s(x, xi, xi+1)

where:

s(x, xi, xi+1) =
1

6
[s

′′
(xi) + s

′′
(x) + s

′′
(xi+1)]

for x in (xi, xi+1).

1



void Spline()

{

double[] x = new double[] { 0, 1, 2.2, 3, 4.4, 5 };

double[] y = new double[] { 1, 3, 10, 7, 4, 0 };

int N = x.Length;

int N1 = N - 1;

double[] t = new double[N1*10+1];

double[] c = new double[N1];

double[] b = new double[N1];

double[] s2 = new double[N];

double h_1 = x[1] - x[0];

double dely_1 = (y[1] - y[0]) / h_1;

for (int i = 1; i < N1; i++)

{

double h = x[i + 1] - x[i];

double dely = (y[i + 1] - y[i]) / h;

double h2 = h_1 + h;

double delsqy = (dely - dely_1) / h2;

c[i] = 3 * delsqy;

b[i] = 0.5 * h_1 / h2;

s2[i] = 2 * delsqy;

h_1 = h;

dely_1 = dely;

}

s2[0] = 0;

s2[N1] = 0;

double omega = 4 * (2 - Math.Sqrt(3));

double eta;

do

{

eta = 0;

for (int i = 1; i < N1; i++)

{

double w = (c[i] - b[i] * s2[i - 1] - (0.5 - b[i]) * s2[i + 1] - s2[i]) *

omega;

if (Math.Abs(w) > eta)

eta = Math.Abs(w);

s2[i] += w;

}

}

2



while (eta >= 0.001);

double[] ss = new double[t.Length];

for (int i = 0; i < N1; i++)

for (int j = 0; j < 10; j++)

{

double h = x[i + 1] - x[i];

double t1 = x[i] + j / 10.0 * h;

t[10 * i + j] = t1;

double t2 = t1 - x[i];

double t3 = t1 - x[i + 1];

double s2x = s2[i] + t2 * (s2[i + 1] - s2[i]) / h;

ss[10 * i + j] = y[i] + t2 * (y[i + 1] - y[i]) / h +

t2 * t3 * 1.0 / 6 * (s2[i] + s2x + s2[i + 1]);

}

}

3



Bibliography

[1] Jens Hee, ”Interpolation for sample rate change”, http://jenshee.dk, June 2019.

[2] T. N. E Greville, ”Spline functions, interpolation, and numerical quadrature”, pp. 156 - 168
in Mathematical methods for digital computers Volume II, John Wiley & Sons, Inc., New York.

4


	Cubic spline interpolation

