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Introduction

Statistical mechanics is used when describing systems with a large number of degrees of freedom.
In this situation it is impossible to use other methods. Moreover the laws of nature may be
unknown and as a consequence only statistical methods can be used.

The ensemble

In this section an ensemble of systems is considered. The ensemble consists of a large number M of
identical closed systems, i.e. systems being in their own universe, all being in thermal equilibrium
with a very large heat bath of temperature T.
Each system is, at any time, in a certain state with energy Ei and the state is changing randomly.
No assumption is made about the probability density functions pi for the states. In fact this is
what we are trying to figure out. Since the systems are identical, each system have the same
number of states N . N is assumed to be very large, and M is assumed to be much larger than N .
The states are ordered according to their energy. The first state having the lowest energy and the
last state having the highest energy, i.e. if i > j then Ei > Ej. It is assumed that no two states
have the same energy. This assumption and the assumption that N is finite is only made in order
to simplify the description in the following, the results derived are valid anyway
Figure 1 shows four examples of state distributions, where M = 9 and N = 3 at four different
instances of time. In Figure 2 the number of systems ni being in state Ei is shown for each instance
of time. Looking at a row in Figure 2, the values corresponds to a set of possible arrangements of
the states over the systems.
Figure 3 shows 4 examples of such arrangements all giving the same state counts. The number of
arrangements is given by:

NA =

(
M
n1

)(
M − n1

n2

)(
M − n1 − n2

n3

)
=

M !
N∏
i=1

ni!

, where
N∑
i=1

ni = M

Using Stirlings formula, logN ! ≈ N logN −N , we have:

logNA = M logM −M −
N∑
i=1

(ni log ni − ni) (1)

= M logM −
N∑
i=1

ni log ni (2)

= M logM −
N∑
i=1

Mpi logMpi (3)

= −M

N∑
i=1

pi log pi (4)

= MS (5)
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Ensemble with 9 systems

t0 1 1 1 1 1 1 1 1 1

t1 3 1 2 1 1 1 1 2 1

t2 2 2 1 3 2 1 3 3 1

t3 1 1 3 1 2 2 3 2 1

Figure 1: State distribution in the ensemble

State count for each state

t0 9 0 0

t1 6 2 1

t2 3 3 3

t3 4 3 2

Figure 2: Number of state counts

Ensemble with 9 systems

1 1 3 1 2 2 3 2 1

1 2 1 1 3 1 2 3 2

3 3 1 1 1 2 1 2 2

2 1 1 1 2 1 3 2 3

2 1 1 3 2 1 1 3 2

Figure 3: State distributions for state counts 4, 3, 2
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where S is the entropy of the distribution pi. The distribution pi can now be found by maximizing
NA, since this will give the most likely distribution. This is the same as maximizing the entropy.
Without any other constraints this gives pi =

1
N
. As this solution leads to an infinite large value

of the average energy, one more constraint must be added. The total energy of the all the systems
in the ensemble is obviously proportional to M:

Etot = ME

This means that the average energy E = Etot

M
, being the same for each system, is finite and a

second constraint must be:
N∑
i=1

Eipi = E

where Ei is the energy of the state si.

Maximizing the entropy

The problem of finding pi can now be summarized:

Minimize:

−S =
N∑
i=1

pi log pi

subject to the constraints:
N∑
i=1

pi = 1

and
N∑
i=1

Eipi = E

This problem can be solved by using Lagrange multipliers:

Minimize:
F = −S + αG1 + βG2

where:

G1 =
N∑
i=1

pi− 1

and

G2 =
N∑
i=1

Eipi − E
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Differentiating with respect to pi gives:

∂F

∂pi
= − ∂S

∂pi
+ α + βEi (6)

= N + log pi + α + βEi (7)

= 0 (8)

and
pi = e−Ne−αe−βEi

Since
∑

i pi = 1 we can define:

Z =
N∑
i=1

e−βEi = eNeα

and we finally have:

pi =
1

Z
e−βEi

This is the so called Boltzmann distribution, where Z is called the partition function.
From the definition of Z we have:

∂Z

∂β
= −

N∑
i=1

Eie
−βEi

and from the second constraint we have:

E =
N∑
i=1

Eipi =
N∑
i=1

Ei
1

Z
e−βEi =

1

Z

N∑
i=1

Eie
−βEi

this gives:

E = − 1

Z

∂Z

∂β
= −∂ logZ

∂β

From the definition of the entropy S we have:

S = −
N∑
i=1

1

Z
e−βEi log

1

Z
e−βEi (9)

=
N∑
i=1

1

Z
e−βEi(logZ + βEi) (10)

= logZ + βE (11)

giving

dS = βdE + dβE +
∂logZ

∂β
dβ = βdE

and
∂E

∂S
=

1

β
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Ideal gas

In an ideal gas the interactions between the molecules are negligible and only kinetic energy has
to be considered.
The partition function is given by;

Z =
N∑
i=1

e−βEi (12)

=

∫
x

dx

∫
p

dp e−β p2

2m (13)

=
V N

N !
(
2πm

β
)
3N
2 (14)

= (
V e

N
)N(

2πm

β
)
3N
2 (15)

giving

logZ = −3N

2
log β + const

or

E = −∂ logZ

∂β
=

3N

2

1

β

It is known from experiments that heat capacity of a monatomic gas is:

CV =
3

2
nR =

3

2
NkB

where
n is the number of moles
R is the gas constant
N is the number of atoms
kB is the Boltzmann constant
Since

CV =
∂E

∂TK

then

E =
3

2
NkBTK =

3

2
N

1

β

kBTK =
1

β

and finally

β =
1

kBTK

=
1

T

where
TK is the temperature in Kelvin
T is the temperature in Joule
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The ideal gas law

If an adiabatic change is made to a system consisting of a cylinder with a piston then:

dE = −Fdx = −PAdx = −PdV

where
F is the force applied to the piston
dx is the displacement of the piston
P is the pressure
A is the area of the cylinder
dV is the change in volume
Using the formula for ∂E

∂V
|S in appendix A one has:

∂E

∂V

∣∣∣∣
S

=
∂E

∂V

∣∣∣∣
T

− ∂E

∂S

∣∣∣∣
V

∂S

∂V

∣∣∣∣
T

= −P

Since
∂E

∂S

∣∣∣∣
V

= T

then
∂E

∂V

∣∣∣∣
T

− T
∂S

∂V

∣∣∣∣
T

= −P

or
∂(E − TS)

∂V

∣∣∣∣
T

= −P

Inserting
E − TS = −T logZ

one has
∂(−T logZ)

∂V

∣∣∣∣
T

= −P

or

P = T
∂logZ

∂V

∣∣∣∣
T

From the previous section we have:

Z = (
V e

N
)N(

2πm

β
)
3N
2

or
logZ = NlogV + terms independant of V

and finally

P = T
∂logZ

∂V

∣∣∣∣
T

=
N

V
T =

n

V
kBTK
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Differentials

Given a function F (x, y) then:

dF =
∂F

∂x
dx+

∂F

∂y
dy = Fxdx+ Fydy

If on the other hand Fx(x, y) and Fy(x, y) are given then they can only be differentials of some
function F (x, y) if:

∂2F

∂x∂y
=

∂2F

∂y∂x
=

∂Fy

∂x
=

∂Fx

∂y
or

∂Fy

∂x
− ∂Fx

∂y
= 0

Example given:
Fx(x, y) = y

Fy(x, y) = x

then
∂Fx

∂y
=

∂Fy

∂x
= 1

and a solution is:
G(x, y) = xy

Now if we return to the cylinder and piston above we have:

dE = −PdV, if dS = 0

dE = TdS, if dV = 0

If we first keep S fixed and then V fixed we have:

dE = −PdV + TdS

−PdV is the work done and TdS = dQ is the applied heat. By rearranging the equation we have:

dQ = dE + PdV

Now
∂Q

∂E
= 1

∂Q

∂V
= P

∂2Q

∂V ∂E
= 0

∂2Q

∂E∂V
=

∂P

∂E

∣∣∣∣
V

=
2

3

1

V

This means that Q depends on the path.
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The harmonic oscillator

Regarding a spring and a mass in equilibrium with a heat bath at temperature T:

Classical

E(p, x) =
1

2m
p2 +

κ

2
x2

Z =

∫ ∞

−∞
e−β 1

2m
p2dp

∫ ∞

−∞
e−β κ

2
x2

dx (16)

=

√
2πm

β
C1

√
2π

κβ
C1 (17)

=
2π

β

√
m

κ
C1C2 (18)

E = −∂logZ

∂β
=

1

β
= T

Does not depend on κ
Hit it and it will start vibrating even if it is stiff

Quantum

Z =
∑

e−βnh̄ω =
∑

(e−βh̄ω)n ≈ 1

1− e−βh̄ω

E = − 1

Z

∂Z

∂β
=

h̄ωe−βh̄ω

1− e−βh̄ω

Compare

High temperature, β small

E =
1

β
= T

Same as classical
Low temperature, β large

E = h̄ωe−βhh̄ω

The Planck distribution

Given a cavity (Lx, Ly, Lz) at temperature TK then the electromagnetic modes are given by:

A sin(
nxπx

Lx

) sin(
nyπy

Ly

) sin(
nzπz

Lz

) sin(2πνt)
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The composite wave number is given by:

(kx, ky, kz) = (
nx

2Lx

,
ny

2Ly

,
nz

2Lz

)

and the magnitude is:

k =
√

k2
x + k2

y + k2
z

k defines a regular lattice where each box has the volume 1
2Lx2Ly2Lz

= 1
8V

and the number of modes

within [k; k + dk] is 1
8
(since kx, ky, kz > 0) of the surface area of a sphere with radius k, divided

by the box volume times dk:

dN(k) =
1
8
4πk2

1
8V

dk = 4πV k2dk

Since ν = kc, where c is the speed of light, the number of modes within dν is given by:

dN(ν) =
4πV

c3
ν2dν

The energy of a mode is found above in the section about the harmonic oscillator and the Plank
distribution becomes:

ρ(ν) =
4πV h

c3
ν3

eβhν − 1
=

4πV h

c3
ν3

e
hν

kBTK − 1

the unit being Joule/Hz. kB is the Boltzmann constant and TK is the temperature in Kelvin

Appendix A

If an adiabatic change is made then:

dE =
∂E

∂V

∣∣∣∣
T

dV +
∂E

∂T

∣∣∣∣
V

dT

∂S

∂V

∣∣∣∣
T

dV +
∂S

∂T

∣∣∣∣
V

dT = dS = 0

dT =
∂S
∂V

∣∣
T

∂S
∂T

∣∣
V

dV

∂E

∂V

∣∣∣∣
S

=
∂E

∂V

∣∣∣∣
T

− ∂E

∂T

∣∣∣∣
V

∂S
∂V

∣∣
T

∂S
∂T

∣∣
V

∂E

∂V

∣∣∣∣
S

=
∂E

∂V

∣∣∣∣
T

− ∂E

∂S

∣∣∣∣
V

∂S

∂V

∣∣∣∣
T
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