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Chapter 1

Introduction

Quantum Mechanics is the theory about the behaviour of particles at the atomic and subatomic
level. In fact, phenomena at the atomic scale can only be explained by Quantum Mechanics.
However, Quantum Mechanics is applicable to macroscopic phenomena as well, though it is not
commonly used due to the extremely small quantum effects in such cases. A consequence of phys-
ical experiments carried out in the 20th century and various theories based on these experiments,
led to the works in 1926 by Werner Heisenberg and Erwin Schrödinger and Quantum Mechanics
was born.
More experiments have been made up till today, and they have underpinned the correctness of
Quantum Mechanics. Some of the results of these experiments are so counter-intuitive that sev-
eral physicists have claimed that Quantum Mechanics must be incomplete, but no experiment
has been made that disproves the theory from 1926. There have also been several attempts to
give an interpretation of the theory and the strange results found by experiments. Among these
interpretations, the so-called Copenhagen interpretation (see appendix A) is widely accepted. In
the following some of these experiments are described along with some theoretical explanation.
It is the author’s experience that it is important to study the experiments before going into de-
tails with the theory of Quantum Mechanics. More details on the experiments can be found in
textbooks and on the net; for example, Wikipedia has several in-depth articles on the subjects.
References to these articles are given at the end of this paper.
To answer your question, quantum mechanics and classical physics are two mathematical models
of reality that describe different aspects of nature.
Quantum mechanics applies to microscopic systems, such as atoms and subatomic particles, while
classical physics applies to macroscopic systems, such as planets and stars. Quantum mechanics
and classical physics have different mathematical formalisms and make different predictions about
the behavior of physical systems.
For example, quantum mechanics predicts that energy, momentum, and other quantities are quan-
tized, meaning that they can only take discrete values, while classical physics assumes that they
are continuous.
Quantum mechanics also predicts that physical systems can exhibit both particle-like and wave-
like properties, depending on how they are measured, while classical physics treats them as distinct
categories.
Furthermore, quantum mechanics introduces the uncertainty principle, which states that there are
limits to how precisely one can know the values of certain physical quantities, such as position and
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momentum, at the same time, while classical physics assumes that they can be measured with
arbitrary accuracy. Therefore, quantum mechanics and classical physics are two mathematical
models of reality that are valid in different domains and have different assumptions and implica-
tions. They are not contradictory, but rather complementary, as most classical physics theories
can be derived from quantum mechanics as approximations in the limit of large scales.
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Chapter 2

The Black Body Radiation

A black body is an object that absorbs all the incoming electromagnetic waves. It is only black
at 0 °K. At higher temperatures it emits electromagnetic energy with a maximum energy density
depending on the temperature and the wavelength, see Figure 2.1 The phenomenon is well known
from heated iron, it turns red when the temperature reaches some hundred ℃. Experiments
have shown that the color is independent of the material the black body is made of. In the
nineteenth century the phenomenon was studied by several physicists, but no theory could explain
the phenomenon. On the contrary theories led to an increasing energy density with frequency,
which is in clear contrast with experiments and common sense. This is called the ultraviolet
catastrophe.
Around 1890 the physicist Max Planck became intrigued by the problem and decided to solve
it. He first made some attempts to find an empirical formula that would fit the measured data.
After more accurate data became available especially at low frequencies, he succeeded in finding
a satisfactory formula.

Figure 2.1: The Black Body radiation

Iλ(λ) = 2hc2

λ5
1

e
hc

λkBT − 1
(2.1)

But Max Planck was not satisfied with a formula that was not founded in a physical theory an
used several years before he in 1901 published a paper where he presented a theory that explained
the phenomenon. What he did was to work backwards from his empirical formula and managed,
using statistical mechanics, to find a strange explanation:
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Electromagnetic waves always have energies equal to hν, where h is a constant
now called the Planck constant and ν is the frequency of the electromagnetic
wave.

As we say today the energy is quantized, but it is a continuous function of frequency. Max Plank
did not at that time regard the theory as final, he could not imagine that electromagnetic waves
in reality had this behaviour. But he was convinced that he was on to something important.
As explained in the next sections it was indeed a breakthrough in modern physics and was the first
step in the development of Quantum Mechanics. The next section utilizes statistical mechanics to
derive the energy density function of a black body, incorporating our contemporary understanding
of quantum mechanics.

Links:
https://en.wikipedia.org/wiki/Black-body_radiation
https://en.wikipedia.org/wiki/Max_Planck

Black Body
In a cavity the energy density (J/m3/Hz) is independent of the shape of the cavity, since two
cavities connected by a thin channel exchange a zero net energy flow if the temperature is the
same.
Given a box cavity (Lx, Ly, Lz) at temperature T then the electromagnetic modes are given by:

A sin(nxπx

Lx

) sin(nyπy

Ly

) sin(nzπz

Lz

) sin(2πνt)

The composite wave number is given by:

(kx, ky, kz) = ( nx

2Lx

,
ny

2Ly

,
nz

2Lz

)

and the magnitude is:
k =

√
k2

x + k2
y + k2

z

k defines a regular lattice where each box has the volume 1
2Lx2Ly2Lz

= 1
8V

and the number of modes
within [k; k + dk] is 1

8 of the surface area of a sphere with radius k, divided by the box volume
times dk, since kx, ky, kz > 0.

dN(k) =
1
84πk2

1
8V

dk = 4πV k2dk

Since ν = kc, where c is the speed of light, the number of modes per unit volume within dν is
given by:

dN(ν) = 8π

c3 ν2dν

since the radiation is polarized in two direction.
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Energy density inside a cavity
The energy density inside a cavity is found by multiplying the number of modes per unit volume
with the energy of the harmonic oscillator (see the next section):

Classical case

uν(ν) = 8π

c3 ν2kBT = 8π

c3 ν2kBT

The unit is J/m3/Hz. kB is the Boltzmann constant and T is the temperature in degrees Kelvin.
It is seen that the energy density is increasing with frequency, i.e the ultra violet catastrophe.

Quantum case

uν(ν) = 8π

c3 ν2 hν

e
hν

kBT − 1
= 8πhν3

c3
1

e
hν

kBT − 1
The unit is J/m3/Hz.
Often the energy density is given as a function of wavelength:

uλ(λ) = uν( c

λ
)

c
λ

λ
= 8πhc

λ5
1

e
hc

λkBT − 1
The unit is J/m3/m.

Intensity of the radiation
In this section the cavity is regarded as the enclosure of a photon gas, where the photons do not
interact with each other and the trajectories are straight lines. Let the radiation intensity from
the inner surface of the cavity in a particular direction be a beam of photons then in a small box
inside the cavity we have:

I = hν

∆tdA

u = hν

∆ldA
dω

dA is the surface area of the small box with length ∆l.
∆t is the average time between photons.
∆l is the average distance between the photons.
I is the intensity of the radiation passing through the box.
u is the energy density in the box with a contribution only from dω.

By integrating over all directions we have:

uν(ν) = Iν(ν)∆t

∆l

∫
dω = Iν(ν)4π

c

We then have the radiation intensity out of a pinhole in the cavity given by:

Iν(ν) = uν(ν) c

4π
= 2hν3

c2
1

e
hν

kBT − 1
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The unit is W/m2/Hz.
And as a function of wavelength:

Iλ(λ) = Iν( c

λ
)

c
λ

λ
= 2hc2

λ5
1

e
hc

λkBT − 1

The unit is W/m2/m.

Energy of the harmonic oscillator

Classical case
The energy of the oscillator is the sum of the kinetic and the potential energy:

E(p, x) = 1
2m

p2 + κ

2x2

From Statistical Mechanics we have:

Z =
∫ ∞

−∞
e−β 1

2m
p2

dp
∫ ∞

−∞
e−β κ

2 x2
dx (2.2)

=
√

2πm

β
C1
√

2π

κβ
C1 (2.3)

= 2π

β

√
m

κ
C1C2 (2.4)

The average energy is then:
E = −∂logZ

∂β
= 1

β
= kBT

Quantum case
From Quantum Mechanics we know the energy of the n’th mode:

En = nℏω

From Statistical Mechanics we have:

Z =
∑

e−βnhω =
∑

(e−βℏω)n ≈ 1
1 − e−βℏω

The average energy is then:

E = − 1
Z

∂Z

∂β
= ℏωe−βℏω

1 − e−βℏω
= hν

e
hν

kbT − 1
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Chapter 3

The Photoelectric Effect

Albert Einstein read the paper by Max Planck, but was as Max Planck skeptical and didn’t believe
the theory was a good description of reality. Albert Einstein’s attitude changed completely, when
he in 1902 received the results of an experiment done by Philipp Lenard (A similar experiment
had been done by Heinrich Hertz in 1887). The experiment demonstrated what is now called the
photoelectric effect, see Figure 3.1.

Figure 3.1: Photoelectric Effect setup

In an evacuated glass tube two metal plates are mounted in either end. A voltage is applied
between the anode and the cathode. The cathode is exposed to light from a light source through
a small window and the current in the electrical circuit is measured.
When the cathode was exposed to light, it was expected that electrons would be removed from
the surface and a current could be observed on the ampere meter, if the intensity of the light was
sufficiently high..
But a current was only observed if the frequency of the light was higher than a certain threshold
frequency, ν0. Above ν0 the current was independent of the frequency, but proportional to the
intensity of the light. The threshold frequency was seen only to depend on the material used for
the cathode, see Figure 3.2.
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Figure 3.2: Frequency threshold

In 1905 Albert Einstein published a paper, having Max Planck’s paper in mind, where he
concluded:

The light in this experiment has to be regarded as consisting of particles (pho-
tons) having an energy equal to hν, h being the Planck constant and ν is the
frequency of the electromagnetic wave.

Physicists were very skeptical about this theory, but when Arthur Compton about 15 years later
in 1923 published his paper about what is now known as the Compton effect, it was generally
accepted that electromagnetic waves sometimes had to be regarded as particles.

Links:
https://en.wikipedia.org/wiki/Photoelectric_effect
https://byjus.com/jee/photoelectric-effect

Explanation of the findings
This phenomenon can be explained by introducing photons. Specifically, photons with a frequency
higher than ν0 possess an energy exceeding hν0. This energy is equal to the energy Ebindig required
to remove an electron from the surface of the cathode:

hν0 = Ebinding (3.1)

If the light intensity is held fixed but the frequency is further increased then the kinetic energy of
the electrons is increased:

hν = Ebinding + Ekin (3.2)
Ekin = hν − hν0 (3.3)

The current is thus zero for an anode voltage less than −V0 and is increased with the anode
voltage. Since the light intensity is held fixed, only a limited number of electrons are removed
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from the surface per unit time and the current saturates independently of the frequency. Figure
3.3 shows the current for fixed light intensity for 3 different frequencies above ν0.
If the intensity of the light is increased, more electrons are removed from the surface and the
current increases proportional to the light intensity, see Figure 3.4.

Figure 3.3: Saturation Figure 3.4: Intensity

10



Chapter 4

The Stern Gerlach Experiment

In 1922 Otto Stern and Walther Gerlach did an experiment with deflection of silver atoms in an
inhomogeneous magnetic field.
They were focused on demonstrating space quantization. Space quantization was in those days
an idea that stem from the Bohr model of the atom and his quasiplanetary electron orbits and an
idea that these orbits may only have discrete orientations in space. Stern’s colleagues who had
proposed the idea, regarded it as a mathematical construct, more than a physical reality.

Figure 4.1: Stern-Gerlach experiment

In the experiment sketched in Figure 4.1 silver atoms in the oven to the left are radiated through
an inhomogeneous magnetic field, with the field direction being mainly in the z-direction (up-
wards), but also with a component in the x-direction. If the atoms had a magnetic moment the
beam would split according to the direction of the magnetic moment. Stern and Gerlach found
that the beam gave rise to two spots on the screen separated in the z-direction. The strength of
the magnetic field was 0.1 Tesla and the distance between the two spots was 0.2 mm. Not much,
but distinct.
The experiment gave rise to discussions, since the phenomenon was unknown. Some physicist
suggested that the result was a consequence of the outermost electron of the silver atom rotated
around the nucleus, others that the electron was rotating around itself. Neither explanation was
accepted, but finally it was realized that the electron has a property, not seen before. This property
is called spin 1

2 . It acts as a sort of intrinsic angular momentum (see the next section). Especially
the later work of Paul Dirac on Relativistic Quantum Mechanics(1927), made it possible to theo-
retically explain the phenomenon.
Links:

11



https://en.wikipedia.org/wiki/Stern%E2%80%93Gerlach_experiment
https://en.wikipedia.org/wiki/Spin_(physics)
https://www.youtube.com/watch?v=AX9769eQV24

Leonard Susskind and Art Friedman, Quantum Mechanics, The Theoretical Minimum, Basic
Book 201.4

More about electron spin

Silver atoms
Ẑ

|z+⟩

|z−⟩
Ẑ

|z+⟩

none

X̂

|x+⟩

|x−⟩
Ẑ

|z+⟩

|z−⟩

Figure 4.2: Cascading Stern-Gerlach setups

Figure 4.2 shows an experiment (not carried out by Stern and Gerlach) where four setups are
cascaded. The boxes labeled Ẑ represent a setup with the magnet oriented upwards as above,
whereas the box labeled X̂ represents a setup with the magnet turned 90 deg. Following the Dirac
notation, |z+⟩ is the state of the atoms deflected up, |z−⟩ is the state of the atoms deflected down,
|x+⟩ is the state of the atoms deflected to the left and |x−⟩ is the state of the atoms deflected to
the right.
The output after the second Ẑ-box is |z+⟩ only. This shows that the |z+⟩ is independent of the
|z−⟩ and that the two states are mutual exclusive and therefore can be regarded as orthogonal.
This in turn indicates that the two states should be be described by two orthogonal vectors
After the last Ẑ-box |z−⟩ reappear which shows that a Ẑ-box cannot be viewed as a sorting
mechanism of electrons having spin up and electrons having spin down. On the contrary, the
electron spin state at the input to the first Ẑ- box must be viewed as a superposition (linear
combination) of the states |z+⟩ and |z−⟩.
It is therefore concluded:

Electrons must be viewed as being in a superposition (linear combination) of
spin states and there is a probability of 50 % that it is revealed as spin up and 50
% that it is reveiled as spin down. It is not possible to say there is a trajectory
for the individual atoms in the Stern-Gerlach experiment.

A no good explantion
As mentioned above the spin has been explained as if the outermost electron of the silver atom
rotated around the nucleus or that the electron charge was rotation around the electron itself.
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The later does not give much meaning since the electron is regarded as at point particle. How can
a point rotate around itself?

Angular momentum of the wavefunction
It was shown by F. J. Belinfante (1939) that the spin can be regarded as an angular momentum
generated by a circulating flow of energy in the wave field of the electron. Likewise, the magnetic
moment may be regarded as generated by a circulating flow of charge in the wave. The theory
gives an explanation similar to the theory of polarized light, which is covered in the next section

Spin in three dimensions and the Hilbert space
Since the two states |z+⟩ and |z−⟩, as described above are orthogonal, a two-dimensional vector
space with an inner product is required (two vectors are orthogonal when the inner product is
zero). Moreover it must be a complex vector space, see below. Such a vector space is called a
Hilbert space.
The orthonormal basis is chosen to be:

|z+⟩ |z−⟩
(

1
0

) (
0
1

) (4.1)

Due to symmetry |x+⟩ and |x−⟩ are also orthogonal and can be represented by two orthogonal
vectors.
Looking at the Ẑ-box to the right, Figure 4.2, it is seen that |x+⟩ appears as |z+⟩ and |z−⟩ (with
equal probability).
It is therefore assumed that |x+⟩ can be written:

|x+⟩ = a |z+⟩ + b |z−⟩

where |a|2 = |b|2 = 1
2 , since the probabilities of |z+⟩ and |z−⟩ are equal.

Similar for |x−⟩ we have:
|x−⟩ = c |z+⟩ + d |z−⟩

where |c|2 = |d|2 = 1
2 .

The possible values for a, b, c, d are ± 1√
2 and ± i√

2 . We chose: a = b = c = 1√
2 and d = − 1√

2 giving
the orthonormal basis:

|x+⟩ |x−⟩

1√
2

(
1
1

)
1√
2

(
1

−1

) (4.2)
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|y+⟩ and |y−⟩ can also be written as linear combination of |z+⟩ and |z−⟩ giving the orthonormal
basis;

|y+⟩ |y−⟩

1√
2

(
1
i

)
1√
2

(
1

−i

) (4.3)

Things we can measure are called measurables or observables and are real quantities. Sometimes
we combine two observables in one complex number, but this is only a convinient way of looking
at a physical phenomenon. The two examples above, the electron spin and the light polarization,
are described using the same mathematics, but the light wave is real and could be described in
vector form, but the complex form eikx−iωt is a lot more convenient. The spin state on the other
hand is a complex quantity. The spin state itself cannot be measured, only the state along an axis
parallel to a magnetic field can be measured. It is therefore necessary to introduce the concept
of operators, that can operate on the complex state and at the same time be used to deduce the
observables. If the operator is chosen to be hermitian i.e:

mij = m∗
ji

then the eigenvalues are real an can represent the observables.
If the expected value of a hermitian operator is introduced as:

⟨Ŝ⟩ =
∑

Ψ∗ŜΨ

and the eigenvalues are the solutions to:

ŜΨ = aΨ

then Ψ is the eigenstate corresponding to the eigenvalue a and we have the expected value of Ŝ

⟨Ŝ⟩ =
∑

Ψ∗ŜΨ =
∑

Ψ∗aΨ = a
∑

Ψ∗Ψ = a

The eigenvalues are thus the same as the expected values of the operator.
For the spin a three dimensional operator is introduced:

Ŝ = (Ŝx, Ŝy, Ŝz)

For Ŝz the eigenstates are:
|z+⟩ |z−⟩
(

1
0

) (
0
1

) (4.4)

and the observables (eigenvalues) are ℏ
2 and −ℏ

2 .
The Ŝz operator is then given by:

Ŝz = ℏ
2

(
1 0
0 −1

)
(4.5)
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Correspondingly for Ŝx and Ŝy we have:

Ŝx = ℏ
2

(
0 1
1 0

)
(4.6)

Ŝy = ℏ
2

(
0 −i
i 0

)
(4.7)

The three matrices: (
0 1
1 0

)
,

(
0 −i
i 0

)
,

(
1 0
0 −1

)
(4.8)

are called the Pauli matrices and a linear combination together with the unity matrix gives all
possible two-dimensional hermite matrices:

M =
(

a + d b − ic
b + ic a − d

)
+ a

(
1 0
0 1

)
+ b

(
0 1
1 0

)
+ c

(
0 −i
i 0

)
+ d

(
1 0
0 −1

)
(4.9)

Note that we have:
[Ŝz; Ŝx] = iℏŜy;

[Ŝx; Ŝy] = iℏŜz;

[Ŝy; Ŝz] = iℏŜx;

Polarized light and electron spin
Spin is divided into two types: spin ±1

2 and spin ±1. Photons have spin ±1. The photon spin can
be observed as polarization and is mathematically equivalent to the electron spin. Since polar-
ization of light is directly observable and thereby less abstract, an understanding of polarization
theory may help understanding the electron spin. However, even both are described using complex
math, polarization can be explained without complex math, whereas electron spin cannot.
Light is an electromagnetic wave seen from a classical point of view. It can be polarized in dif-
ferent ways, e.g. horizontally or vertically. A horizontally polarized electromagnetic wave has a
horizontal electric field. For vertically polarized light the electric field is vertical. Any kind of po-
larization can be viewed as a linear combination of horizontal and vertical polarization, assuming
the magnitude is 1:

E⃗h = eikx−iωte⃗h

e⃗h =
(

1
0

)

E⃗v = eikx−iωte⃗v

e⃗v =
(

0
1

)

E⃗ = aE⃗h + bE⃗v = |a|ejϕE⃗h + |b|ejθE⃗v

e⃗ = ae⃗h + be⃗v = |a|ejϕe⃗h + |b|ejθe⃗v
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ϕ and θ are the phase angles of the electromagnetic wave and |a|2 + |b|2 = 1.
For polarization turned + or - 45 deg we have:

e⃗+45 = 1√
2

e⃗h + 1√
2

e⃗v = 1√
2

(
1
1

)

e⃗−45 = 1√
2

e⃗h − 1√
2

e⃗v = 1√
2

(
1

−1

)
For circular polarization (left and right) we have:

e⃗cl = 1√
2

e⃗h + e
iπ
2

1√
2

e⃗v = 1√
2

(
1
i

)

e⃗cr = 1√
2

e⃗h − e
iπ
2

1√
2

e⃗v = 1√
2

(
1

−i

)
Since the e⃗ vectors are the same as electron spin state vectors we have the following table:

Pol. Type Spin state Vector

H |z+⟩
(

1
0

)

V |z−⟩
(

0
1

)

P+45 |x+⟩ 1√
2

(
1
1

)

P−45 |x−⟩ 1√
2

(
1

−1

)

Pcl |y+⟩ 1√
2

(
1
i

)

Pcr |y−⟩ 1√
2

(
1

−i

)

Table 4.1: Cascading Stern-Gerlach setup, state transitions

Figure 4.3 and Figure 4.4 illustrates the orthogonality of vertical and horizontal polarization, In
the first all input is seen at the output, in the second there is no output. But by inserting a a
polarizer rotated + or - 45 deg it is seen that the vertical polarization can be viewed as a sum of
polarizations in these directions. When the third polarizer is turned 90 deg, the light is polarized
in the vertical direction. Note that turning the secon polarizer - 45 deg or 135 deg , gives the
same result and the directions are equivalent.
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Vertical

Figure 4.3: Polarization V-V

none

Figure 4.4: Polarization V-H

Horizontal

Figure 4.5: Polarization V-VH 45-H

Vertical

Figure 4.6: Polarization V-VH 45-V
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Chapter 5

The Compton Effect

x-rays photon
electron

scatered electron

scatered x-rays photon

Θ

Θ

Figure 5.1: Compton setup

I 1923 Arthur Compton carried out an experiment with x-ray scattering, see Figure 5.1. It had
been known for some time that the scattered x-rays had a larger wavelength (and thereby lower
frequency) than the incoming x-rays. But Arthur Compton was the first to give an explanation
for the phenomenon. When x-rays are scattered a recoiling electron can also be observed and by
assuming the collision is elastic, it was possible for him to foresee the wavelength of the scattered
X-rays. The conclusion was:

X-rays must in this experiment be regarded as particles with energy hν

Just like the finding by Albert Einstein about 15 years earlier. This time physicists were convinced
that in some situation electromagnetic waves must be regarded as particles. The experiment led
Louis de Broglie in 1924 to suggest the analogy, that particles like protons and electrons also in
some situations must be regarded as waves, ”Matter waves”, with a wavelength of λ = h

p
called

the de Broglie wave length and energy E = hc
λ

= hν. This in turn led to the works in 1926 by
Werner Heisenberg and Erwin Schrödinger: Quantum mechanics was born.
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Derivation of the scattering formula
Looking at Figure 5.1 we have:
The conservation of energy

Eγ + Ee = Eγ′ + Ee′

Eγ = hν

Eγ′ = hν ′

Ee = mec
2

E2
e′ = (pe′c)2 + (mec

2)2

giving

hν + mec
2 = hν ′ +

√
(pe′c)2 + (mec2)2

p2
e′c2 = (hν − hν ′ + mec

2)2 − m2
ec

4

Conservation of momentum

pγ = pγ′ + pe′

pe′ = pγ − pγ′

pγ = h

λ
= hν

c

pγ′ = h

λ′ = hν ′

c

giving:

p2
e′ = pe′ · pe′

= (pγ − pγ′) · (pγ − pγ′)
= p2

γ + p2
γ′ − 2pγpγ′cosθ

p 2
e′c2 = (hν)2 + (hν ′)2 − 2hνhν ′ cos θ

We now have:

(hν − hν ′ + mec
2)2 − m2

ec
4 = (hν) 2 + (hν ′) 2 − 2hνhν ′ cos θ

νmec
2 − ν ′mec

2 = νhν ′(1 − cos θ)
mec

2

ν ′ − mec
2

ν
= h(1 − cos θ)

And finally we have the observed shift in wavelength:

λ′ = λ + h

mec
(1 − cos θ)
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Chapter 6

Electron diffraction

The fact that particles sometimes must be regarded as waves, was first demonstrated by the
Thomson-Reid Transmission Diffraction Experiment (1927) and by the Davisson-Germer exper-
iment (1923-1927). As explained above light had been regarded as waves whereas electrons had
been regarded as particles and that only light could be diffracted, but the experiments mentioned
above showed that electrons indeed can show diffraction patterns. In order to see the diffraction
pattern low energy electrons must be used and this requires in turn effective vacuum, since oth-
erwise the electrons are absorbed by the remaining gas.
Effective vacuum had not been possible earlier and that is why the diffraction pattern had not
been seen before these experiments. It has later been shown that also protons and neutrons may
reveal wave properties.
In case of the Thomson-Reid experiment, the electron beam is directed towards a celluloid film
and then detected by a photographic film. The diffraction pattern looks like the picture in Fig-
ure 6.1. Given the electrons energy E (approx. 25 keV) the de Broglie wavelength is h

p
=7.5pm.

Later Thomson alone made similar experiments with aluminum and gold film also showing the
diffraction pattern.

Figure 6.1: Thompson-Reid

In case of the Davisson-Germer experiment, low energy electrons were fired against a nickel crystal
and the reflected electron intensity was recorded as a function of angle and it was shown that the
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result was similar to X-ray diffraction. After several experiments it was possible to find the de
Broglie wavelength.
Links:
https://en.wikipedia.org/wiki/Electron_diffraction
https://royalsocietypublishing.org/doi/pdf/10.1098/rspa.1928.0022
https://en.wikipedia.org/wiki/Davisson%E2%80%93Germer_experiment
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Chapter 7

The Double-Slit Experiment

The double-slit experiment using light has been studied since the beginning of the 19th century,
Thomas Young in 1801. In those days, it was not clear whether light consisted of particles or
waves, but during the 19th century physicists became more and more convinced about the wave
theory culminating with James Maxwells development of his famous equations. But from the
appearance of the Quantum Mechanics, it was clear that electromagnetic waves must be regarded
as particles in a number of situations.

Electron- or light beam
Interference patternDouble slit

Figure 7.1: Double-slit setup

The double-slit experiment is shown in Figure 7.1. The intension is to demonstrate the wave-
particle duality of photons. The setup is as follows: Two closely spaced slits are made in an
opaque plate and a light source is placed in front of it. Behind the plate is a screen showing the
pattern of what is observed. If one slit is covered the pattern on the screen looks like a small cloud,
but if the light can pass through two slits an interference pattern can be seen, see Figure 7.2. If
the intensity of the light is lowered an interference is still seen after a while. Even if only one
photon is emitted at a time the pattern still shows up, but now after a long time. It is not possible
to determine which slit the photon is passing through due to the uncertainty principle derived by
Werner Heisenberg.

Figure 7.2: Interference pattern

The phenomenon can be explained by stating that the Schrödinger equation has two solutions
and a weighted sum is also a solution meaning that the photon enters a superposition which
give rise to the photon interferes with itself. See also the Mach-Zehnder interferometer. The
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Schrödinger equation and superposition is explained in mere detail in Appendix A. It was not
until 1961 the experiment was carried out with electrons by Claus Jönsson. Later others have
made similar experiments also demonstrating the wave behaviour of other elementary particles.
https://en.wikipedia.org/wiki/Double-slit_experiment
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Chapter 8

The Mach-Zehnder Interferometer

light beam
beam splitter

beam splittermirror

mirror

detector B

detector A

Figure 8.1: Mach-Zehnder setup

The interferometer is shown in Figure 8.1. An incoming light beam to the left is split into two and
combined again in the beam splitter to the upper right. Due to the behavior of the beam splitter,
it is possible to adjust the mirrors and the two beam splitters so that no light is detected at B and
all light is detected at A. The two beams coming from the mirrors are summed and subtracted in
the beam splitter to the upper right. If the intensity of the incoming beam is lowered still only
detector A receives light.
Even if only one photon is entering the interferometer at a time, only detector A detects the
photon. The Schrödinger equation has two solutions for the photon, one going up, the other to
the right, at the first beam spliter. The full solution is thus a linear combination of the two
solutions. This is called a superposition state. At the beam spliter to the upper right the two
solutions are combined and the photon is only detected at detector A.
If the lower vertical path is blocked by a detector C, then this detector detects the photon every
second time on the average and every second time on the average the photon is detected by either
detector A or B.
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The Beam splitter
The beam splitter has been known for more than 200 years. It comes in different designs; the
Cube Beam splitter consists of two right angle prisms glued together to form a cube. One of the
prisms is coated with a different refractive index. As the name says it can be used to split an
incoming light beam into two beams, but can also be used to combine two light beams.

Cassical view
The beam splitter has two inputs and two outputs and the relation between the incoming and
outgoing light is: (

Y 0
Y 1

)
=
(

h00 h01
h10 h11

)(
X0
X1

)
(8.1)

Since the beam splitter is almost loss less, the incoming energy and the outgoing energy must be
the same:

|h00X0 + h01X1|2 + |h10X0 + h11X1|2 = |X0|2 + |X1|2

giving
|h00|2 + |h10|2 = 1
|h01|2 + |h11|2 = 1

(h00h
∗
01 + h10h

∗
11) = 0

Moreover if the beam splitter is balanced, i.e. a single input gives the same intensity for the two
outputs we have:

|h00X0|2 = |h10X0|2

h01X1|2 = |h11X1|2

giving
|h00|2 = |h01|2 = |h10|2 = |h11|2 = 1

2
ei(ϕ0−ϕ1) = −ei(ϕ2−ϕ3) = ei(ϕ2−ϕ3+π)

Examples of ballanced beam splitters are:

1√
2

(
1 1
1 −1

)
,

1√
2

(
1 ei π

2

ei π
2 1

)
,

1√
2

(
1 e−i π

2

ei π
2 −1

)
(8.2)

All matrices are unitary:
M̄M∗ = E

Using the beam spliter:

1√
2

(
1 e−i π

2

ei π
2 −1

)
(8.3)

a corresponding diagram is sown in Figure 8.2.
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ϕ1 = 0

ϕ2 = 0

ϕ1 = π
2 , ϕ2 = π

ϕ1 = 0, ϕ2 = −π
2

Figure 8.2: Beam spliteter phase

ϕ1 = π
2

ϕ2 = 0

detector A
ϕ1 = π, ϕ2 = π

detector B
ϕ1 = π

2 , ϕ2 = −π
2

Figure 8.3: Beam splitter II output

From Figure 8.3 it is seen that the outputs at detector B cancels out, whereas the outputs a
detector A adds in phase.

Quantum mechanics
If we only look at one photon at a time, a quantum mechanical approach is necessary. There are
two solutions to the Schrödinger equation. at the beam splitter. One solution is denoted |xu⟩ the
other |xr⟩ corresponding to the path up and the path to the right. These two solutons are called
states and can also be described by two orthogonal vectors (see Chapter 4):

|xu⟩ |xr⟩(
1
0

) (
0
1

) (8.4)

The superposition state is described by:

α

(
1
0

)
+ β

(
0
1

)
=
(

α
β

)
(8.5)

where |α|2 + |β|2 = 1

The sum of the probabities of finding the photon in one of the two paths must be one if the
beam splitter is loss less and the two probabilities must be the same if the beam splitter is bal-
anced. The math is thus the same as in the classical case, where energy is replaced by probability.
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A single phopton entering the Mach-Zehnder interferometer is therefore always detected at de-
tector A. In case the lower path is blocked there is 50% probability of detecting the photon at
detector C , 25% at detector A and 25% at detector B.
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Chapter 9

Elitzur-Vaidman bomb

light beam
bomb

beam splitter

beam splittermirror

mirror

detector B

detector A

Figure 9.1: Mach-Zehnder setup

The Mach-Zehnder interferometer is shown again in Figure 9.1 now with a bomb inserted in the
lower path. The inserted bomb can either be functioning, i.e. if hit by a photon it explodes or
the bomb can be defective letting the photon pass unaffected.
As mentioned above if the lower vertical path is unblocked, then a photon is only detected at
detector A, whereas if the lower path is blocked by a detector, this detector detects the photon
every second time on the average and every second time on the average the photon is detected by
either detector A or B.
It it now clear that inserting a functioning bomb corresponds to the situation where the lower
path is blocked and the bomb will explode every second time on the average and every second
time on the average the bomb does not explode and the photon is detected by either detector A
or B.
Inserting a defective bomb corresponds to the situation where the lower path is unblocked and the
photon is always detected at detector A. Assuming a collection of bombs where 50% are defective
and 50% are functioning, with their states being unknown, the following Table 9.2 shows the
possible outcomes on average when a photon is sent to the beam splitter:
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Bomb state Action Detector A Detector B
Functioning Explode None None
Functioning Explode None None
Functioning Survive None Detected
Functioning Survive Detected None
Defective None Detected None
Defective None Detected None
Defective None Detected None
Defective None Detected None

Figure 9.2: Elitzur-Vaidman bomb outcome

It is seen that detector B is only detecting the photon if the bomb is functioning an does not
explode. It is thus possible to find 1

8 of the bombs as functioning without destroying them. The
cost is that 1

4 of the bombs are destroyed. 5
8 are unknown since for these the photon is detected

at detector A.
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Chapter 10

Entanglement

In 1935 Albert Einstein, Boris Podolsky, and Nathan Rosen published a paper (The so called EPR
paper) where they devised a thought experiment showing that according to Quantum Mechanics
it should be possible to bring two particles in a combined state with only two outcomes.
If two independent particles can be measured being either in state |0⟩ or |1⟩, then there would
be four possible outcomes |00⟩ , |01⟩ , |10⟩ , |11⟩ when measuring the states of both particles. But
according to quantum mehanics it is possible to create the two particles in a combined state
where only the states |00⟩ and |11⟩ are possible. Or alternatively only the states |01⟩ and |10⟩ are
possible. It would then be possible to bring the two particles apart at a large distance and if the
state of one of the particles is measured, then the state of the other particle would instantly be
known . The phenomenon is now called entanglement.
According to the EPR paper this violates the principles of locality (only local phenomenons can
have an effect locally) and that information cannot be transferred faster than the speed of light.
Their conclusion was therefore that quantum mechanics was incomplete and that the particles must
have properties called ”hidden variables” (some times called supplementary parameters) in order to
avoid the ”spooky action at a distance” (information cannot be transferred faster than the speed of
light). It is important to recognize that the EPR paper was published without Einsteins approval
furthermore Einstein was in no way in opposition to the correctness of quantum mechanics or the
reality of entanglement, it was a question of interpretation. Something was missing in order to
give a satisfactory explanation of observations. The discussion continued between Albert Einstein
and Niels Bohr, who refused to accept that quantum mechanics was incomplete. However, most
physicists concentrated more and more on the many questions that could now be answered by
quantum mechanics.
But in 1964 John Bell published a paper where he devised a test, Bell’s inequalities, that showed
that the hidden variable theory was incompatible with quantum mechanics. Clauser and Freedman
made experiments in 1972 to test Bell’s inequalities and the experiments were not in favor of the
hidden variable theory. Later in the early 1980s Alan Aspect finally made several experiments that
clearly showed that the hidden variable theory could not be correct since Bell’s inequalities were
violated and that the experiments were in accordance with quantum mechanics. The consequences
were foreseen by Einstein:
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Either
We must drop the need of independence of the physical realities in different
parts of space.
or
We must accept that measurements of one system can change (instantaneously)
the real situation of another system.

So it is a question of whether the two particles should be regarded as one system spread out over
space, or two systems instantaneous linked together.

Bell’s inequalities

S

λ
+1

-1

+1

-1

I II
a b

Figure 10.1: Measurement setup

We have an example of two entangled particles when a photon is split into a positron and an
electron where the spin of the two particles must be opposite of each other since the total spin
must be zero, but the distribution of the spin is random. The probabilities of observing spin up
and spin down are each 50%. An other example is two photons being emitted from the same
state transition, here the polarization of the two photons are the same, but the distribution
of polarization of each photon is random, see Figure 10.1. The result of measuring particle 1 in
direction a is thus A(a, λ) = ±1 an the result of measuring particle 2 in direction b is B(b, λ) = ±1,
where λ represents the initial states of the two particles. If the distribution of λ is p(λ) then the
expected value of the cross function A(a, λ)B(b, λ) is :

P (a, b) =
∫

dλp(λ)A(a, λ)B(b, λ)

Using a simplified view introduced by Clauser, we consider the quantity:

s = A(a, λ)B(b, λ) − A(a, λ)B(b′, λ) + A(a′, λ)B(b, λ) + A(a′, λ)B(b′, λ)
= A(a, λ)[B(b, λ) − B(b′, λ)] + A(a′, λ)[B(b, λ) + B(b′, λ)]

Since A and B can only take the values ±1 we have:

s(a, a′, b, b′, λ) = ±2

and the average of s over λ is thus:

−2 ≤
∫

dλp(λ)s(a, a′, b, b′, λ) ≤ 2
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or
−2 ≤ S(a, a′, b, b′) ≤ 2

where
S(a, a′, b, b′) = P (a, b) − P (a, b′) + P (a′, b) + P (a′, b′)

Using Quantum mechanics we have the joint probabilities:

p++(a, b) = p−−(a, b) = 1
2cos2(a, b)

p+−(a, b) = p−+(a, b) = 1
2sin2(a, b)

And the cross function is given by:

P (a, b) = p++(a, b) + p−−(a, b) − p+−(a, b) − p−+(a, b) = cos(2(a, b))

and S is given by:

S(a, a′, b, b′) = cos(a, b) − cos(a, b′) + cos(a′, b) + cos(a′, b′)

Using the vectors in Figure refrefAA2 we have:

SQM = S(a, a′, b, b′)

SQM = cos(2π

8 ) − cos(23π

8 ) + cos(−2π

8 ) + cos(2π

8 )

= 2
√

2

It is clear that quantum mechanics violets the Bell inequality.

ϕ ϕ
ϕ

Figure 10.2: Vectors giving max SQM , ϕ = 22.5◦

Experiments by Alain Aspects
Alain Aspect was at an early stage intrigued by the Bell inequality and decided to make an
experiment that would show whether the Bell inequalities were fulfilled or not. He devised several
experiments, but only the one from 1982 is described here, see Figure Figure 10.3. In the middle
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S

λ

a

-1

+1

-1

+1

PM PM

PMPM

P (a, b) = N++(a,b)−N+−(a,b)−N−+(a,b)+N−−(a,b)
N++(a,b)+N+−(a,b)+N−+(a,b)+N−−(a,b)

Figure 10.3: 2. Measurement setup

there is a source producing single pairs of entangled photons. A pair is produced every 0.01 sec.
The two photons move in opposite directions and hits a polarizer where it is diffracted either up
or down corresponding to two orthogonal polarizations. On the figure a and b are the angles of
rotation of the polarizers.
Looking at the photon to the left the output is totally random, the probability of finding the
photon in state + is 1

2 and −1 1
2 , likewise for the photon to the right. But if a = b the joint

probability of both photons being instate +1 is 1
2 and −1 is 1

2 , whereas the joint probability of
finding one in state +1 and the other in state −1 is 0. This means that although the output is
random at either end, the two photons are perfectly correlated. The distance between the two
polarizers is 6 m.
The number of observations of the two photons are N++,N+−,N−+,N−− and the cross function is
given by the formula in Figure 10.3. The experimental result of S is:

Sexp = 2.697 ± 0.015

This shows that the Bell inequality is clearly violated.
Taking the measurement inaccuracies in to account, quantum mechanics gives:

SQM = 2.70 ± 0.05

It is therefore concluded that the hiden variable theory is incorrect and that quantum mechanics
is in accordance with experiments. We therefore is left with the prediction by Albert Einstein as
mentioned in the beginning of this chapter.
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Chapter 11

Teleportation and entanglement
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